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SLCT IOTJ I

INTRODUCTI ON

It can be said that a majority of modern high thrust propulsion
nozzles obtain their thrust by means of a reactive force to the ex-
pelled fluid. Prediction and maxi mi zation of the performance of these
devices require that the flow field be accurately analyzed in the
three fl ow stages , name ly the subsonic, the transonic, and the super-
sonic regimes .

In the present investi gation , the transonic flow region of a pro-
pulsion nozzle is studied. In this region , h igh pressure fluid is
received as a result of some combustion process. The second stage
receives potential energy , associate d with static fluid temperature ,
and relinquishes kine tic energy , associated with translational fluid
velocity . Thus , in the transonic region , an increase in linear
momentum is realized. The outflow of this stage is supersonic and ,
in fact , provides initial condi tions for the third stage along whicn
the flow is everywhere supersonic .

To this date there has been abun dant literature published on Lht
subject of transonic nozzle flow . One general method of solution,
and the method of solution p resented here i n, is a series expansion
technique . Generally, the expansion approach invol ves a parametric
solution to a particular set of governing flow equations where the
expans Dn parameter can be directly related to the flow geometry.

One of the pioneers of the çxpansion method of solution was
Sauer. In his original paper (1) the governing equations are reduced
to a convenient form by means of a perturbation. The flow velocity is
then expanded in a power series as a function of the radial coordinate.
The coefficients of the series are obtained by substituting the series
into the perturbed governing equations. These coefficients turn out
to be functions of the centerline velocity .

A different approac h to the expansion technique was used by
Hall. (2) In this report3 the veloci ty components along the region of

t’
~ Sauer, R., “General Characteristi cs of the Flow Through Nozzles at

Near Criti cal Speeds,u NACA TM No. 1147 (1947).

~
2
~Hall , I.M., Is iransonic Flow in Two-Dimensional and Axially-Symetric

Nozzles ,” Quart. Journ . Mech . and Applied Math., Vol . XV , Pt. 4 (1962)
pp. 487-508.

- — —- . ~~~~~~~~~~~~~~ • ~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~

I ‘
—--

~~ 

— • I
• —

~~ 

- PP!CEDI$ PAGE BLFJIK..NOT FlU V

L ~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

— I- 
-5’-  

~~~~~~~~~~~~~~~~~~~~~ °!~~~~~~ ~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~ -— . — .—-,—.- - - .
. .Z--, -



the throat are cal culated by means of an expansion in inverse powers
of R , the radi~s of curvature of the nozzle profile at the throat. It
can be shown(3) that Sauer ’s solution is a special case of Hall ’ s
solution when terms of order R-2 are neglected. Two innovative aspects
to Hall ’s work made it a unique contribution to the literature . One
concept is to expand the wall contour in terms of a McLaurin series
and the other is to employ a “coordinate stretchhl . Both of these ideas
are used in the fol lowing investigation .

It is observed that the nozzle boundary is not a constant coordi-
nate line in cylindri cal coordinates and therefore must be eva l uated
as a power series . So, the wall boundary condition is never exactly
satisfied in cylindri cal coordinates . Also , the radial velocity
component is proportional to the boundary slope, which can become
qui te large in the throat region of nozzles having small radi i of cur-
vature. Hence , Kliegel and Levi ne (4) speculated that the accuracy
of the solution could be improved by considering a solution in a
coordinate system where the flow axi s and wall are both coordinate
lines . This suggests a toroidal coordinate system for nozzles having
throats whose cross-section is circular. It happens that in toroidal
coordinates , the solu ti on now appears in powers of l/(R + 1 ). In
this system , the convergent properties of the expansion solution are
in fact superior. In addition , in the limi t of large radi i of curva-
ture, the flow field of Kliegç l and Levi ne reduces to Hall ’s, as it
must. Finally, it is noted (‘ i) that comparisons between theory and
exper iment are excellent.

Another expansion method whi ch uses an inverse approach for
solving the transonic flow problem , was proposed by Hopkins and Hill.
In their development, a transfo rmation to a velocity-potential , stream-
function coordinate system was used in simplifying the governing
equations. Four partial di fferential equations result from the basic
flow characterization . The partial differential equations are solved
by means of writing the unknowns in the form of a power series ; the
coefficients being functions of velocity potential only. The two
authors make use of the solution to analyze annular type , unconvention-
al nozzles.

R.J. Jr., Thompson , H.D., and Hoffman, J.D., Ilcomparison of
Transonic Flow Solutions in C-D Nozzles,’1 A ir Force Aero Propulsion
Laboratory Report No. AFAPL-TR-74-1lO, (October 1974).

~
4
~Kl iegel, J.R., and Levine, J.N., “Transonic Flow in Small ThroatRadi us of Curvature Nozzles,” AIAA Journal , Vol. 7, No. 7 (July

1968) pp. 1375—1378 .

~
5
~Hopkins , D.F., and Hill , D.E., “Transonic Flow in Unconventional

Nozzles,” AIM Journal , Vol. 6, No. 5 (November 1967), pp. 838-842.
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Unt i l now , almost all of the transonic flow analyses have dealt
wi th either an axi syninetri c or planar nozzle geometry. However , in
present des ign , it is sometimes necessary to use non-circular pro-
puls ion nozzle to facilitate the nozzle , airframe integration . Ivanov
and Ryl’ko(6) consider a three-dimensional transonic flow problem for
an elliptic geometry by writi~ :i the system of governing equations (gas
dynamjc eq uations) in integra . form. The equations are solved numeri-
cally l.7,8) using a di fference scheme of continuous calculations of
the discontinuities of the solutions to the gas dynamic equations. To
accomplish this , one fourth of the flow field (from symmetry conside r-
ations) was divided up into 3200 elemental cells. The initial distri-
bution of flow varia bles in the nozzle was taken from the one—dimen -~
sional computations . Va rious ratios of semi-major to semi-mi nor axes
were chosen and numerical resul ts for the flow distribution are given .

This report concerns the analytical solution of the transonic flow
in a converging—diverging nozzle having an ellipti cal cross-section
and fol l ows cl osely the M.S. Thesis of Epstein (9)~ A power series
expansion technique similar to that of Hall (2) is employed. The
p rocedure consists of:

1. Writing the governing equations and boundary conditions in
a suitable non-dimensional form .

2. Writing the velocity components as a power series in terms of
an expansion parameter c.

3. Determining the first order governing equations and boundary
conditions by substituting the power series form for the
velocity components into the governing equations.

4. Assuming an appropria te (consistant) form for the solution
to the first order governing eq uations.

(
~
6)
~vanov , M. Ya., and Ryl ’ko , O.A., ‘Analysis of Transonic Flow in

Elliptical Nozzles , IZV. AKAO . NAUK SSSR , MEKH. ZHID. GAZA , No. 3
(September 1972), pp. 161-163.

~
7
~Godunov , S.K., “Di fference Method of Numerical Solution of Differ-

ent Problems of Flui d Mechanics .1’ Matem. Sb., Vol . 47(89), No. 3
(1959), pp. 271—306 .

~
8
~Godunov , S.K., Zabr odin , A.V. ,  and Pro kopov , G.P., “Diffe rence

Scheme for Two-Dimensional Unsteady Problems of Gas Dynamics and the
Calculation of Flows with Detached Shock Waves ,” Zh. Vychis lit. Matem .
I Matem. Fiz., Vol . 1 , No. 6 (1961), pp. 1 020-1050.

~
9
~Epstein , M..A., “Transonic Flow in Nozzles Having an Ellipti cal

Cross Section,” M.S. Thesis, Purdue University , December 1976.
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5. Using the to~~ di~ .~ condi tions to solve for  the various
constants tha t. appear in the solution .

In the f i rst dpperldi x of the work done by May , Thompson , and
Hoffman,( 3) a general transoni c solut ion for an axi syninetri c nozzle
is presented. The relat ion between the work conducted herein and
that of reference (3) is discussed in Section 

V. 4



SECTION II

GOVERNING EQIJAT ION~

The nozz le flow ~s considered to be irrotationa l, invisc id , and
steady . Orthogonal cyl indrical coordinates (x ,r ,O) are used , and the
orig in of the coordinate system is ta ken at the center of the throat -

x is measured in the downstream direction wi th r measured radial ly
and 0 measured tangentially.

The governing equations are the Euler equations ,

= PDV/ Dt (1)

and the continuity equation ,

+ pV V = 0 ( 2)

where V = (irvr + i 0V0 + i~ v~
) v~ , Vr, and v~ are the veloc ity compo-

nents i n the x , r, an d S di rections respectively; D/Dt is the substan-
tial derivative given by

VD 0

for steady flow , and p is the density. Also, the “del” operator in
cyl indrical coordinates is written :

v = i  ~— ÷ T  J ( L + 1  -
~~-- (4)r Dr S r ;~u x x

+ -
~where 1 r~ i5 

and i x are unit vectors in the coordinate direction .

Now the definition of the speed of sound, namely,

dP~ - 2—i — a  5api s
can be written for an irrotational , steady , inviscid flow in the form ,

(6)Dt Dt

Using equation (6) to eliminate density derivatives from equation (2)
and expanding the resul t yields

5

— —  
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[ ‘ V  ‘ V  ‘V  v
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~ 0 (7)•r r r r x j r •r r ,U X ‘X

where a is the Sound speed and P is the pressure .

The next step is to use the Euler equations to eliminate the
pressure from equation (7). In cylindrical coordinates the Eule r
equations can be written

- ‘V V ~V IV
- = 

~
, 

~~ 

r 
+ 

o 
~~ + V (8)r •r r x ~x )

v v , ~v Dvl~~P 0 ‘~--- ~-- = ~~~v -— - - + - - —- - ÷ ~~~~~ 
—-- (9)r r r r x ~x

- = P(V y. -~~~-~~- +  ~~ + v~ 
~~~~~~~~ (10)

Equations (8) through (10) are substituted into equation (7) so that
the pressure terms are eliminated:

r 
[a
2_v~) 

+ L ± 2  (a
2_v~) + ~‘x 

(~
2~ ,2} - vrv~(~~~j~~

+ i~i~i1

- V rVx 1~
r + - v v  + + 

~~~~~ 
Vr 

= 0 (11)

Now for a steady , irrotational, inviscid flow the Euler equations can
be replaced by the irrotational ity condition , namely

V x V O (12)

Now , expanding the irrotat ionality condition in cylindrical
coordinates yields

Dv
• 

= 
~~

-
~~

-
~

- r (1 3)

Dv av
...j X ( 14)
Dx •

~i~F~
Dv ~v D(rv

(15)

6

-.
~~~

— I. - - — ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -~ -- - — - -- ______________________________- — -~~~~ —~~ -— - - - — - - 1 1_ L r — - —--



Using equations (13) through (15) in equation (11) yields :

a” 
(a
2_v~) + -

~~ 

-

~

- -
~~

- (a
2_ v~) + ~ x 

(a
2_v~) 

- 2vv ~ 
0 

- 
r O

Dv a2v
— 2v rvx ~~~~~~~~ 

— 2v5v~ 
-

~~
--

~~
- + —v- = 0 (16)

The nozzle geometry near the throat is assumed to be ellip tica l
in cross-section so that the boundary geometry is described by the
equati on

r2cos 2S 
+ 

r2sin 2o 
= 1 (17)

cx (x) 6
2(x)

where cx and ~ are even functions of x such that the nozzle is syninetric
about x = 0 in the throat regi on . Writing cx and 6 in a power series
for smal l values of x,

a(x) = A0 + A 2x2 
+ 0(x 4 ) (18)

6(x) = B0 + B2x2 + 0(x 4 ) (19)

where 0(x4) denotes terms of order X4 and higher.

It is convenient to nondimensiona lize the problem at this point.
The length A0 is used to nondimensionalize all distances and the
critical sound speed , a*, is used to nondimensionalize velocities.
Thus ,

— r — xr 
~ A— and x ~~~~~~~~~ (20)

0 0

0 is al ready nondimensional since it is measured in radi ans. Similarly,

and
~~x~

E
~~~ 

(21)

For the adiabatic flow of an i deal gas Bernoulli’ s equation can
- —...~~~~~ be written

a2 
= Y. a*2 - iJ~ [v~ + v~ + v~) 

(22)

Substituting equation (22) as well as the nondimensional coordinate
and veloc ity components into equation (16) and simplifying yiel ds :

1
- — .- — ‘~~~~ w~r’~~~ 

- - -i. 
-. - 

~~~ ~~
“ 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~  
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- V 2 + X 
~~

l 
- ~~~~~ 

~~~~~ + f v~ - v~~J - ~~~~~~~ ~~
‘ (2fl

~~~~ 
2~~ ~~~2 v v  1

V [ ~~~ i~l (~~~+ 
~~~~~~ 

c’:i ~~~~~~~

Using the nondi rnensional expressions for the velocity components
and coordinates in equations (13), (14), and (15) gives:

(24)

= -
~
-
~~~~ (25)

Dv iv .
= ~ ~ J~- + (26 )

Equations (23) through (26) are the nondimensional governing
equations . The procedure now is to write the dimensionless velocity
components in terms of an expansion parameter , c, where e is small
compared to one. Then , since consideration is to be_ limi ted to a
region close to the throat , V r and v~ are small and v~ is approximatelyequa l to unity . The assumed perturbation of the coordinate velociti es
are :

+ 

~~xl 
+ 

~~
V
x2 

+ c3~~3 + ... (27)

y
r C V rl + L V

2 
+ 

~~~~~~~~~~~~~~~~~~~~~~~~ 

(28)

V = C V
01 

+ C V
02 

+ .. (29)

These particular powers of L are used so that the boundary conditions
can be satisfied and so that a reduction to the special case of
axisymmetric flow is possible.

In order that the i rrotationa lity equations (24), (25), and (26)
be satisfied , the x-coordir’~te mus t be transformed to

= ~ l/2 (30)

1 ~~~~~~~~~~~~ 

- 
T —~~~~~~~~~ 

- 
- ~~~~~~~~~~~~



Substituting equations (27) through (30) into the governing
equations (equat ions ( 23 ) thro ugh ( 26 )) and re taining only the l owest
order powers of epsilon yields

~ r1 
+ 

~~~ 

:~

-

~

- - 
zl 

V
1 

(‘y +1) + V y~ = 0 (31 )

DO = r Dz (32)

Dv Dvrl — zl 
33)Dr

r ~~0l 
+ v01 

= ~ rl 
(34)

For convenience , the bars over the velocities in the three coordina te
directions and over r and z have been dropped. Equations (31) through
(34) are the fi rst order governing equations for the present problem.

V

9 
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SECTION I I I

BOUNDARY CONDITIONS

• The fi rst boundary condi tion arises from the fact that the
veloci ty component norma l to the nozzle boundary is zero. That is,

~~~ (35 )

where n is a unit norma l to the nozzle surface.

To write this condition in a sui table form for the present
problem , it is necessary to recall the expression for the nozzle ’s
geometry, equation (17). Thi s can be nondimensiona lized as follows .
Let

1 + A0A2~
2 (36)

and

+ A0B2~
2 (37)

Then , 2 2 2 ~r cos 0 r sin ’~0 —

A2 and B2 can be real ted to the expansion parameter ca r d wil l be dis-
cussed later. Again , for convenience, the bars over a(x)and 6(x) will
be dropped.

For a wall contour defined by r = h(x,0), a McLauri n expansion
about x = 0, hol ding for all theta yields

r h(x,O) = h(O,0) + m ’x + ~,-m ’’ x2 + 41-m ’’’ x3 + ... (39 )

where

= 

~ 1xO ’ m ’’ = in ’ ’ ’  = -!~1~=~ 
... (40)

I
10
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From equation (38) and from the definition of the wall contour ,

r = h(x ,O) = cx6/ (6
2cos20 + 

2~~~2~~1/2 (41)

Then ,

= 

Dx~x=0 
= 0 (42)

and

2 2A (A S3cos2O + B A 3
sin

2
OI

= 
D h  

= 
o~~2 o 2 ° (42)

Dx2 x 0  
(~~cos

2e + A~sin20)

The expansion of higher order derivatives , i.e., m ’’ ’ , m~~, etc. re-sults in a series wi th terms of higher order in epsilon and are there-
fore neglected.

Now , returning to equation (38), observe that it can be written
as

6
2r2cos 20 + cx2r2s1n 20 - = 0 = f ( r ,O,x) (44)

where f is a function of r, 0, and x and represents the nozzle surface .
But ,

s7f = c~ (45)

where c is a constant. In addition ,

(46)

Thus , equation (35) may be wri t ten  as:

v
y
r f + ~~ + Vx 

= 0 (47)

-• - - ---..
~~~~~ Next , the quantities V

r $ v , and v will be expanded about
r = h(0 ,o) h~ : 0 X

• Vr 
= Vr (X

~
h
~

0) = Vr(X~
ho~

O) + (h—h0) x,h0,O

(h—h )2 32v (48)
+ 2~ ~~~ x,h0,0

11 
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V
p 

= v (  x , h , ) v 
- •  

(x ,h0 ,~ ) + (h-h 0) ~~ x,h 0 ,1,

2 2 (49)
(h—h 0) • v

~ 2~ 
- -  

• : ~ 
+

x ,h0 ,O

= v
~

(x ,h , )  = V (x,h~ , )  + (h - h0 )

2 2 (50)
(h-h ) -~ v

0 X
2’  2Dr x ,h0 ,~

Now , rec3ll that the wall contour was defined by r = h(x ,u).
The n ,

r - h ( x ,0) = 0 = f(r,~~,x) (51)

Differentiating thi s equality gives the following:

;~f _ Dh ~f
_ Dh

~~~~~~~~~~~

‘ ‘ 

~O D O ’ and~~~~— — ~~~ 52

This factor h r  can be ezpanded in terms of the boundary by means of
an expansion along the nozzle wa l l .  Observe that

l _ 1 — ___ 1 _ l I 2
~
‘ hc~

+ó h0(l+~7çr h0 L~ 
~~~~~~~~~ 2 (53)

Then , equation (47) becomes

V r 
- v~ ~~~~~ 

- 
~~
-— + ~~~~~~~ - ...~~~ 

- v~ = (54)

The expansions for V r, v , and v~ are substituted from equations (27),
(28) and (29) and higher order terms are dropped. Thus ,

312 v rl (Z Iho~~
)) - L ” v 1 (z ,h ,u) .~~~~ ~ — - v 1 (z~h0 ,0)4~ = 0 (55 )
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But can be found directl y from equation (39):

= m ’ + m ’’ x = m ’’ c1”2 z (56)

since m ’ was found to be zero. Therefore, equation (55) becomes

c3/2 Vri(Z~ho~0) 
- c3”2v01 (z ,h0,O) 4,~-~0-~ -—

(57)
— c 1

~
’2m ’’ v 1 (z ,h0 ,0) z = 0

where m ’’ is gi ven by equation (43).

In order that the terms of equation (57) be of the same order in
c and reduce to the axi symetric case the following relationship
between A2, B2 and L is assumed.

A2 
= c/2 ; B2 = kc/2, (58)

where k is a constant.. The c/2 terms are essential for a reduction
to the axisymetric case but the selection of constant k is arbitrary .
Moreover , it is observed that k has the effect of restri cting the
nozzle geometry by fixing the ratio between nozzle semi-major and semi -
minor axes .

By the relationships of equations (58) m ’’ is of order c and
equation (57) reduces to

~3/2 
Erl 

,h0,i) 
- v01 (z ,h0,0) ~~~ - = 0 (59 )

which is the fi rst boundary condition .

A second boundary condition arises from the fact that the radial
velocity at the nozzl e centerline ( r = 0) must be zero . That is,

vr1(z~O~O) 
= 0 (60)

Finally, consideration of the tangential velocity component offers
two additional boundary conditions . Since the two geometrical planes
of syninetry are chosen as the planes of symmetry for the tangential
velocity component , this velocity component vanishes at 0 = 0, rr /2,
-it , and 3ir/2 for all va lues of r and z. Due to elliptical symmetry only
one-fourth of the flow region needs to be considered . So,
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V~~ (z,r ,O) 0 (61 )

v 1 (z , r,n/2) 0 (62)

Equat ions (59). (60), (61) ,  and (62) are the four first order
bo undary cond i t ions .

• 
_____ p
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SECTION IV

PROB LEM SOLUTION

From Section II  the fi rst order governing equations are:

Dv Dv Dv v

~~

_

~~~~~

+ 3--i-- -~-~-~ v~(-y+l) + —
~~~~

= 0 (31 )

Dv Dv
Z — r 0 (32)DO

Dv Dvr _ z 33Dz Dr

Dv
-
~~~~~ 

(rv
~
) = (34 )

and from Section III the fi rst order boundary conditions are :

V (z,h ,o) Dh
vr(zi ho,0) 

- 
0 

h0 
° - !!

~E.i = (59)

vr(z,O iO) = 0 (60)

v0(z,r,O) 
= 0 (61)

v0(z,r,-ir/2) 
= 0 ( 6 2 )

__ .—~~~~~ where the subscript one has deen dropped from all velocities since con-
sideration is limi ted only to first order. Note that the governing
equations and boundary conditions for axi symetric flow are a special
case of the present formulation and are obtained by setting v0=~/~0=O.
Further , it will be shown in Section V that the solution to the
present three-dimensional transonic flow problem reduces to the axisym-
metri c solution .
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To begin the solution , a series of the form

DE 2 (r ,O)
V r = C 1 + E 1(r ,O) + —

~~~
— - —  z (63)

is assumed for the radial velocity component where C1 is a constant and
E 1 and E2 are functions of r and 0. Vr is chosen in this fashion so
that it can be represented as a linear yet completely general function
of r, , and z, and at the same time reduce to the axisyrtinetric case
when the 0 dependence is surpressed .

Using this representation of vr, it is seen that in order to
satisfy equation (33) the axial component of velocity , vZ, must be of
the form

Vz 
= E2(r,O) + D1 ( O ) + D2(O)z (64)

where D1 and D2 are functions only of 0.

Similarly, in order that equation (32) be satisfied ,

:iE 2 ( r ,O) DD1( ) )  1 DD2(O) 2 1
V = r DO + + r DO + ~ E~(r,U) (65)

where £ 3 is a function of r and o.

Now , when equations (63), (64), and (65) are substituted into
equation (31), one obtain a quadratic equation in z. Since that equa-
tion mus t hold for all z the coeffi cients of the various powers of z
must be zero. The result is

-

~~ 

-
~~

-
~~

- (rE 1) + ~E-!- + ~~~~ - D2(y+l)(E2+D1) = 0 (66)

1 DE 1 D2E D2D 2
-
~~

-
~~ (r -

~~
) + —

~~~ 
—~2~ + - 02 (y+l) = 0 (67)

2
(68)

r DO
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Also , substituting equations (63) and (65) into eq uation (34)
gives

iE ;E

r DO

Substituting the expressions for yr. v~, and v .  into the four
boundary conditions wi l l  yield additional relationships between the E’ s
and D~s. Applying boundary condition of equation (60)

C 1 + E~ + z = 0 (70)
0,0 0,0

Since this expression must hold for al l values of 0 and z,

C 1 = 0 (71)

E 1~ 0 (72)
0, 0

(73)
0,0

Applying boundary condition of equation (61) and setting the coefficients
of powers of z to zero gives

DE DO
(74 )

0=0

DO
DO L=0 -

E 3~ = 0 (76)

Likewise for boundary equation (62),

DO
(77)DO DO

DO
= 0  (78)DO o=-n12

‘

I 

_ _ _ _
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E3~ 0 (79)
- O~ /2

Fi n ally, applying boundary condition of equation (59). and setting
the coefficients of the powers of z to zero yields ,

- -
~~~~~

—
~~

- E3 
= 0 (80 )

0’ 0’

- 
~~~~~ 

~~ + 

~~
l
~~h (  ~~~~

— = 0 (81 )

h iD

~~~~ ~
‘
~~ h 

= 0 (82 )

The next step in deriving a solution is to choose a form for
and E2. Again , the series technique is employed and general rela-
tionships depending on r and ~ are assumed which will result in a re-
duction to the axisyn-rtetric case when the theta dependence is surpressed.
Then, let

~r E2 = 03 (O) r + 04 (0) (83)

where 03 and 04 are functions of 0 only. But to satisfy equation (73),

04( 0 )  = 0 (84 )

Thus after integration ,

E2 = 03 i— + D5(O) (85)

Equations (63), (64), and (65) indicate that D5 can be set to zero since
it can be combined with Dl in equations (64) and (65) or is zero when
diffe rentiated with respect to r in equation (63). Then,

2
E 0 r 862 32
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Next, integration of eq uation (68) twice yields 02 = +

where C2 and C3 are constants. But , to satisf y equation (~~) C2 0
and

02 
= C3 (87)

Substitution of the above expressions for B2 and 02 into equatio n (67)
gives the following partial differential equation:

~)
2D

203 + ~~~~~~~~~ (y+l)C~ - ~ (88)

Using the technique of series solution once more , the function
is assumed to be of the form ,

= D6(O)r
3 

+ D7(0)r
2 

+ D8(o)r + D~(6) (89)

where 06, 07, 08, and Og are functions of 0 only. Boundary equation
(72) indicates that

D~(e) = 0 (90)

Substituting equations (88) and (89) into equation (66) gives

V C
r2 L406 - 

~-~<‘y+1)D3 ]+ 3rD 7 + (208 
- C3(-~+l)D1 ) + ~~-~~- ~~~~

-
~
- = 0 (91)

In addition , applying equation (89) to equation (69) and integrating,

DD 4 DO7 3 DO 2
E3 = ~~~~~~~~~~~~ 8r 

+ D10( o ) (92 )

where D10 is a function of 0. Differentiating Eq uation (92) with respect
to 0 and substituting into equation (91) yields

_
~~ P 3( C 1 1r ~4D6 - ~-~(y+l)D 3 + ~~~~~~~~~ + r 307 + 3 

•—

~~~~

-

~~ 

+ - C 3(’y + 1 ) 0 1 +

1 D2D 1 DO
(93)

which must hold for all values of r. Thus

_ _ _ _  
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2 [)
6 

+ = 2C3(1 +l)D3 (94)

-
C- 0

+ 907 
= 0 (95)

2 
+ 40

8 
= 2C 3(y-F1)0 1 (96)

d U10 
= o (97)

Integration of equation (97) once gives

010 
= C 4 (98)

where C4 is a constant.

Inspection of the above group of equations shows that in order to
solve di fferential equations (94) and (96), forms for 03 and Dl must be
assumed. Since 03 is a function only of 0, and, since the flow in the
tangential direction is periodic, the function 03 can be represented as
a Fourier series (10)

03 = + 

n~l 
Lnsin (~n0]+ n~l 

MnCoS (anO) (99)

where C,~, Ln, Mn, and are constants . Furthermore , in order that
equatioil (88) be satisfied , 0i mus t a lso have a Four ier ser i es repre-
sentation .

= + 

n~l 
Nnsin (6n0)+ n~l 

Rncos(6nO) (100)

where C6, ~~ Rn~ 
an d are cons tan ts .

~~~~ge1 , M.R., Fourier Anajj~is , Schaum ’s Outline Series , McGraw-
Hil l Book Co., 1974.
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0
Since - - - s- can be written in terms of 

~~~~ 

by equation (86 ) , bound-
ary condi tions (74) ari d (77 )  can be used in eValuat ing some of the
constants in equat ion (99).  That is,

~Ho 0 [ ~~1 n n 1 n )  - 

n~l
Mn 

= 0 (101)

Therefore ,
Ln 

= 0 (102)

Also ,

~=-~/2 [n~1~nLnc05 (A n~] 
- 

n~1
Mn ~~~~ (~n } }  

= 0 (103)

Therefore,
= 2n (104)

Similarly, boundary conditions (74) and (77) applied to equation
(100) yields :

Nn 
= 0 (105)

= 2n (106)

Thus , Dl and 03 are written as:

= 

n~l 
R cos2n s + C6 (107)

03 
= 

n~l 
M cos2nO + C5 (108)

The above two expressions may now be substituted into equation
(88) to obtain:

n~1
Mnc052n0 12 - 

~~~ 
] 

- 
~~~~~ n~1

4fl2Rn~~
52fl0 + 2C5 - (y+l)C~= o (log)

21
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Since this expression must hold for all values of r and 0, the second
two terms give the following information:

R = O  (110)

C5 
= ~~~~ C~ (111)

In addition, it is seen that in order to have the firs t tern~ equa l zero
for all 0 , n = 1. Then , equations (107) and (108) reduce to

Dl C6 (112)

and

03 = M1 cos2~ + ~~~~~~~~~~ C~ (113)

Expressions for both Dl and 03 are now known so that equations
(94) and (96) can be solved. Equation (94) is written as

~~~~~~~~~ 

+ 16O~ = 2C3(-f+1)(M1 cos2O + ~~~ C~ (114)

Then , a particular soiution (Ifl is given by

O F ( -y)r2 (O-y)r1 1
o P = f ~~~ 

— g(y)dy (115)6 ~r2 r’1,

where r1 
= 4i , r2 

= -4i , and

g(y) = 2C3(~÷l )(M 1cos2Y + 
~~~~

-
~
- c~) (116)

Carrying out the indicated integration and adding the comp l ementary
solution to 06P gives the complete form for 06:

~ 8e11rna n , R ., and Cook(, K.L ., Modern_Eleme n~~~y Di fferential
Equations , Addison -Wesley Publishing Co., In~7, 1968.
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( ÷1)C~M1= C 7sin4 - + C )cos4 ’ — - (cos4 - - cos?--)

(r + l ) 2C~
- - -

~~~~
-
~

— - -- - (cos4 - - 1) (117)

where C7 and C8 are cunstants.

Looking to equation (95), its solution is ~i nip ly

= C9sin3 t ÷ C10cos3 (118)

where C9 and C10 are constants .

Similarly, the solution to equation (96) is seen to be

08 
= C11 sin2~ + C12cos2o + C13 (ll ~ )

where C11 , C12, and C1 are constants . Upon substi tutin 7 this expres-
sion for 08 back into ~quation (96), C13 is found to be

C C
C13 

= - --
~~

---
~~

- (y+l) (120)

Then , -

C C
08 = C11 sin20 + C12cos20 + —

~~
---

~~
- (i~l) (121)

Expressions for 06, 07, D8, and 010 are now known in terms of o
and various constants . Some of these constants can be eva l uated from
boundary conditions (76) and (79). Firs t, equations (98), (117), (118),
and (121) are substituted into equation (92), the result being

4 1~ 2(y+1)C3M1E3 
= 3~— J4C 7cos4O — 4C8sin4O — — 

12 — (-4siu-i4~ + 2sin2O) -

(-4sin4O)1 + — (3C9cos3e 
- 3C10sin30) + ~~

— (2C~~cos2e - 2C 12sin2u)+C4

(122)
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4

When condition (7b) is applied above ,

C7 = C9 
= C11 = = (I (123)

Likewise, app lying condition (79), it is found that

C10 
= 0 (124)

Thus far the boundary equations (80) and (81) have not been
satisfied. A surr~nary of the results thus far follows :

y
r 

= E 1 + zrD3 (125)

= C6 + C3z + D3r
2/2 (126)

v0 
= E3/r + (3D 3/D0)(zr/2) (127)

where

= D6r
3 

+ 08r (128)

E3 
= (DD6/~u)(r

4/4) + (DD 8/D0)(r
2/2) (129)

D3 = M1cos20 + C~ ((y+l)/2) (130)

D6 = C8cos40 - ~~~~~~~ C3M1 (cos4O-cos2O) 
- 

(i-Fl)_C3(cos4O~l) ( 13 1)

and

08 
= C12cos20 + ~~~~

-
~
- C3C6 (132)

All that remains is to dete rmine the constants C~, C6, C8, C 12
p and M1 from the remaining boundary condit ions . The fi rst boundary

condition to be used is equation (81). From Equation (41),

h0 = h(0,O) = B0/(B~cos
2O + A~sin

2
O} 

1/2 (133)

and Dh0 - 

-h~ (A~ - B~) sin2O

2B0
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Also , from equations (43) and (58),

h 3A
rn ’’ = f B~3cos 2O + kA0

3sin 2O] (135)

After eq uations (133), (134), (135), (112), and (86) are substituted
into equation (81) and evaluated at h0, all resulting tri gonmetric
functions can be written in terms of even powers of cosO. Each re-
spective power of coso is factored , leaving

cos2o [M l1A~ 
+ B~] 

+ ~~ c~ (B~ - A~]-[B~A0- o}] = 0, (136)

and

c~ 
(y 1J A0

2 
- A0

2M1 
- = 0. (137)

Since these two expressions must be true for all values of 0 , eq uat ion
(136) yields

M1 
~~ 

(B0 
- kA0) (138)

and equation (137) yields

V A  7 1/2
C3 = F B0(y+l) (B0 + kA0)] (139)

Fol lowing the same procedure with equation (80) and after con-
siderable algebraic manipulation one obtains

_ p 
= ?: [T1(T62_4T52)_4T2T5T5] (140)

C6 = 

2I0(2I~

3
+ T~)

(3T1T6 
- 4T2T5 + 6T5T6C12~ (141)

-j 1
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4T IC  A 2

• C8 = T-~ ~ 
- -~~~~ + 3~

-5-5
~ 

(142)

where

T ~ 1~t~
1_ C 2 ‘143o 2  3

I 1 (T 0M1 )/(3C3) (144)

T2 (T 0
2/(4C3) (145)

T5 = (A0
2 

+ B0
2)/2B0

2 (146)

T6 = (A 0
2 

- B0
2)/2B0

2 (147)

In sumary the velocity components 
~rl’ 

v~ l and Vzl at any point r ,
0
, and z can be easily calculated in terms of the geometric variabl es

A0, B0, and k by calculating the ten constants M1, C3, T0, I , 12,
I5, T6, C12, C6, and C8 in that order from equations (138), ~l39),(143) , (144), (145), (146), (147), (140), (141) and (142) respectively.
The velocity con~onents are :

v l- cos4~1(C8-T1 -T2)~
3 cos2O(T1~

3 
+ C12r + M1~~) +

3 (148)
(T 2i~ + T0C6r/C3 + T

~~~
)

V
y 

sin4o(C8 T1 T2)~
3 

- sin20(T1~
3/2 + + M1 rz) (149 )

V~ 1~ cos2o( M1~
2/2) + T0~

2/2 + C3~ + C6 (150)

where the original bar notation and subscript one have been revived to
stress that the result is nondirnens ionalized and is only the first
order solution .

__________ ______ 
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SECTION V

REDUCTION TO ThE AX ISYM PIE TFi IC CASE

In the fi rst appendix of reference i the analogous solution for
the flow field in a converging -diverging axisyninetric nozzle is derived.
A necessary condition for the elliptic solution of this investigation is
that it reduces to the axi syninetri c sol uti on when A0 

= B0 and k = 1.

The fi rst order solution of reference 3 for non-dimensional case
(i.e. A0 

= B0 
= 1) is:

u 1 
= y/2 - 1/4 + [2/(y+1)]~~

2z (151)

= (y/4)(y2-l)[(y+l)/21~~
2 

+ yz (152)

For axisyninetri c flow (i.e. A = B and k = 1) equations (138 )
through (147) reduce to: ~

M1 
= T1 

= 16 
= C12 = 0 (153)

C3 
= [2A0/(y+l)]

1
~
’2 (154)

= A0; T2 
= A0

2/(4C 3): T5 
= 1 (155)

C6 = -A~/4; C8 = 12 A0
2/(4C3) (156)

Thus for axisymetric flow equations (148)-(150) become

# 

~r1 
= ( 4) ( ~

2 l ) [ (y  )/2A0j
1”2A0

2 
+ A~~ ( 1 )

V0 1  
= (158)

~z1 
= A0~

2/2 - A0/4 + [2A0/(y ÷l)]~~
2 (159)

Equations (l57) - ( 159) are identica l to eq uations (151 ) and (152) (except
for d ifferences i n notati on) when A0 is set to urity .
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SECTION VI

SUMMARY AND RECOMMENDATIONS

1 . The first order approximation to the transonic flow field for a con-
verging-diverging propulsion nozzle having an elliptical cross sec-
tion has been obtained.

2. The method presented is generalized such that it can be extended in
a straight forward manner to obtain higher order approximations to
the flow field.

3. The solution is periodi c in the tangential velocity component , v - ,
as would be expected, and the solution reduces to the special case
of axisymetri c flow when terms containing v0 and D/ 30 are surpresse d.

4. The solution can be easily progranined . Parametric studies of the
flow field as a function of geometric variables such as the ratio of
major to minor axes of the elli ptic cross-section could provide use-
ful information for advanced propulsion nozzle design.

- -----p 
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